Перейти к списку литературы  Текущий журнал 

0 1 [ 2 ] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Однако, часто функциональные особенности проектируемого здания и экономические соображения приводят к необходимости сочетать по высоте (или протяженности) здания различные конструктивные системы, что приводит, в свою очередь, к формированию комбинированных строительных систем зданий. Примеры комбинированных строительных систем для многоэтажных домов с нежилыми первыми этажами даны на рис.10.


РисЛО. Примеры комбинированных строительных систем: 1 - монолитные стены, 2 - панельные стены, 3 - сборный железобетонный каркас

Нарушш стены

Пантнш




Нирпичные









Рис.11. Комбинированные строительные системы бескаркасных зданий малой и средней этажности

За годы формирования в России многоукладной экономики объем применения и вариантность комбинированных строительных систем, особенно в малоэтажном строительстве, существенно возросли, хотя их конструктивная система преимущественно остается единой - бескаркасной (рис. И). 20

Строительные системы зданий с несущими стенами из кирпича и мелких блоков являлись одними из основных и за последнее время их доля даже возросла в возведении жилых зданий различной этажности.

Известные осложнения в применении рассматриваемой строительной системы внесли резкое изменение нормативных требований (увеличение в 2...3 раза) к сопротивлению теплопередаче наружных стен. Практически для большинства районов России это приводит к необходимости перехода от стен сплошной кладки к слоистым трехслойным с эффективным утеплителем, несущая способность которых ограничена пятью этажами. Из большинства традиционных решений удаётся сохранить сплошную кладку из пустотелых керамических блоков и блоков из автоклавного ячеистого бетона для южных районов страны.

Полносборные каменные системы со стенами из заранее отформованных кирпичных (керамических, каменных) блоков или панелей, изобретенных и широко применявшихся в бывшем СССР в 50-60-е годы, несмотря на их высокие экономические и прочностные качества, постепенно ушли из практики. Однако, с 90-х годов высокий энергоэкономический эффект и индустриальность слоистых кирпичных панелей стимулировали рост их производства в США и Канаде.

Полносборные здания из бетона возводят в крупноблочной, панельной, каркасно-панельной и объемно-блочной системах.

Крупноблочная строительная система применяется для возведения жилых и массовых общественных зданий (школ, поликлиник и т.п.). Предельная высота зданий - 16 этажей, масса блоков - 3...5 т. Для наружных стен блоки формуют из легкого или ячеистого бетона, для внутренних - из тяжелого бетона. Разрезка стен на блоки (по высоте этажа) преимущественно двухрядная (на простеночные и перемычечные элементы). Установку крупных блоков ведут по принципу каменной кладки: на цементно-песчаный раствор и с перевязкой вертикальных швов. Создание крупноблочной строительной системы было первым этапом индустриализации строительства зданий с бетонными несущими стенами. Внедрение панельной системы с более высоким уровнем индустриальности привело к сокращению объемов крупноблочного строительства. Повышение нормативных теплотехнических требований к наружным стенам будет способствовать дальнейшему вытеснению крупноблочной системы, поскольку она ориентирована на однослойные конструкции наружных стен с сопротивлением теплопередаче в пределах 1,0... 1,1 м2 ®С/Вт, то есть в 2,5...3 раза ниже ныне требуемых. В связи с этим в ближайшей перспективе крупноблочная система имеет возможности к дальнейшему применению только в комбинированном варианте, например, крупноблочные внутренние стены и слоистые наружные из панелей или трехслойной кирпичной кладки.

Панельная система применяется в проектировании гражданских зданий высотой до 30 этажей в обычных условиях строительства и до 14 - в сейсмических. Несущие стены панельных зданий состоят из панелей высотой в этаж, протяженностью до 7,2 м, массой до 10 т. В отличие от крупных блоков стеновые панели не самоустойчивы: при возведении их устойчивость обеспечивают монтажные приспособления, в эксплуатации - специальные конструкции стыков и связей. Панели несущих стен устанавливают на цементно-песчаный раствор без перевязки вертикальных швов.

Внедрение панельной системы в экспериментальное строительство произошло в середине 40-х годов одновременно в бывшем СССР и во Франции. К концу 50-х оно начало внедряться в массовое жилищное строительство в СССР, Франции, Дании, Шве-



ции, Чехословакии и ряде других европейеких стран. К концу 80-х годов панельное домостроение в СССР составляло в среднем свыше 60% объема жилищного строительства, а в крупнейших городах - 80...90%. В 90-е годы панельное домостроение в России, как и многие наиболее передовые в технологическом отношении отрасли промышленности, переживает существенный спад. Из находившихся на территории СССР 600 домостроительных предприятий в России осталось 380, суммарной производительностью (в 1989 г.) - 72 млн.м общей площади в год. В течение последующих лет их производительность из-за ряда организационных просчетов в приватизации предприятий и падения инвестиций упала вдвое к концу 1996 года, продолжает снижаться до настоящего времени. Однако, главной причиной падения производительности стало сокращение государственного финансирования социальной сферы - массового строительства жилья, детских учреждений, школ, поликлиник и др., являвшихся главными потребителями продукции домостроительных предприятий и заводов сборного железобетона. Несмотря на это панельное домостроение сохраняет лидирующее положение в городском жилищном строительстве (до 40% от общего объема, в Москве до 60%), но для его "выживания" необходима структурная перестройка предприятий. В первую очередь для этого требуется расширить производство большепролетных преднапряженных настилов перекрытий, изделий для строительства зданий с комбинированными (стены и каркас) конструктивными системами и зданий с комбинированными строительными системами (внутренние конструкции панельные, наружные - мелкоштучные, и наоборот). Такая пе-


Рис.12. Схема конструкций бескаркасного крупноблочного дома продольно-стеновой системы: 1 - блок наружной стены простеночный, 2 - то же, перемычный, 3 - то же, подоконный, 4 - балконная плита, 5 - железобетонный преднапря-женный многопустотный настил перекрытия, 6 - вентиляционный блок, 7 - карнизная плита, 8 - парапетная плита, 9 -блок внутренней стены поясной, 10 - то же, простеночный, 11 - бетонный блок стены подвала, 12 - железобетонная фундаментная подушка, 13 -подкровельная плита

рестройка обеспечит возможность гибко ответить резко возросшему разнообразию (по функциональному и конструктивному решению) заказов. Естественно такая перестройка требует инвестиций, которые всегда дефицитны. Однако, четкая организационная

структура домостроительной промышленности позволяет при наличии инвестиций решать такие задачи весьма оперативно и в сжатые сроки. Примером может служить быстрая переориентация домостроительных предприятий с изготовления однослойных панелей наружных стен на трехслойные с повышенным в 2...2,5 раза сопротивлением теплопередаче, проведенная в сжатые сроки после введения новой редакции главы СНиП "Строительная теплотехника".

Неизменными остаются преимущества панельного домостроения перед традиционным в меньшей массе конструкций (на 30-40%),по показателям суммарных затрат труда и сроков строительства более чем на 30%.

Ведущим техническим преимуществом панельного домостроения по сравнению с традиционным является его высокая пространственная жесткость, позволившая практически без дополнительного увеличения затрат конструкционных материалов перейти от 5-этажной к 16-22-этажной застройке и обеспечивающая сейсмостойкость сооружений при разрушительных землетрясениях.

Каркасно-панельная строительная система применяется в строительстве общественных (преимущественно) зданий высотой от 1 до 30 этажей. Внедрена в СССР в экспериментальное строительство наряду с панельной во второй половине 40-х годов, а в 60-е годы стала основной в процессе индустриализации строительства массовых и уникальных общественных зданий. В жилищном строительстве применяется редко (только при наличии соответствующей производственной базы), так как существенно уступает панельной по показателям затрат труда, сроков строительства и расхода стали.

Однако в проектировании массовых общественных зданий она лидирует, так как ее экономические недостатки компенсируются компоновочными преимуществами. Каркасная система обеспечивает гибкость планировочных решений при проектировании и относительно недорогую модернизацию и даже перепрофилирование зданий в процессе их эксплуатации. Такой относительно незначительный компоновочный недостаток каркасно-панельной системы, как наличие ригелей, преодолим при использовании без-ригельных каркасов.

Каркасно-панельное строительство, аналогично панельному, испытывает те же затруднения, связанные с перестройкой экономики.

Объемно-блочная строительная система и конструкции бетонных объемных блоков (несущих и ненесущих) были разработаны и внедрены в экспериментальное строительство в СССР в конце 50-х годов. В 70-е годы были отработаны технологические схемы производства объемных блоков различных конструктивных модификаций, освоены методы их монтажа и завершен отбор более целесообразных монтажных механизмов. Заводы объемно-блочного домостроения вышли на проектную мощность, и новые конструкции получили внедрение в массовое жилищное строительство как в обычных, так и в сложных инженерно-геологических условиях строительства.

Объемно-блочные здания возводят из крупных объемно-пространственных бетонных элементов весом до 25 т, заключающих в себе жилую комнату или другой фрагмент здания. Объемные блоки устанавливают друг на друга, как правило, "столбами" - без перевязки швов. Возможности системы в части крупной пластики архитектурной формы за счет консолирования блоков, их взаимного смещения, поворота в массовом строительстве используются в ограниченном объеме, но в уникальных объектах - весьма широко.

Объемно-блочное домостроение обеспечивает существенное снижение суммарных трудозатрат (на 12-15% по сравнению с панельным) и прогрессивную структуру этих за-



трат. Если в панельном соотношение затрат труда на заводе и строительной площадке составляет 50:50%, то в объемно-блочном - 70:30%. Объемно-блочную систему применяют при проектировании жилых зданий, гостиниц, общежитий, пансионатов различной этажности - от одного до 16-ти этажей.

Наибольший экономический эффект объемно-блочное домостроение обеспечивает при большой концентрации строительства, необходимости его осуществления в сжатые сроки и дефиците рабочей силы.

Монолитная и сборно-монолитная строительные системы применяют преимущественно при возведении жилых зданий средней и повышенной этажности. К системам монолитного домостроения относят случаи возведения всех несущих конструкций частично из монолитного бетона; к сборно-монолитной - случаи выполнения несущих конструкций частично из монолита, частично - из сборных железобетонных изделий. Монолитные здания, как правило, проектируют бескаркасными, сборно-монолитные -каркасными и бескаркасными. Первые примеры эпизодического применения монолитного бетона для возведения стен и перекрытий гражданских зданий в нашей стране относятся к 1880 г В 30-х годах вновь возник интерес к этой системе, но она получила преимущественное применение при строительстве специальных сооружений - бункеров, силосов, силосных батарей, а также промышленных цехов и т.п. Качественно новый этап применения монолитного бетона в нашей стране начался в 60-е годы в известной мере под влиянием успешного опыта монолитного домостроения в Англии, Франции и в некоторых других западных странах.

В 70-х годах проведены работы по созданию индустриальных опалубок, освоению технологии, возведению домов-представителей и всесторонней проверке эксплуатационных качеств таких зданий в отечественных природно-климатических условиях .С 80-х годов монолитное домостроение составляет существенную и интенсивно развивающуюся отрасль жилищного строительства. С 90-х годов монолитное домостроение в России получает дополнительный стимул к развитию в связи с активизацией деятельности совместных и зарубежных фирм, импортирующих разнообразное технологическое оборудование для монолитных работ, что обеспечивает широкий диапазон технических решений и отбор наиболее совершенных.

На архитектурно-планировочные и конструктивные решения зданий существенно влияет избранный метод бетонирования несущих конструкций зданий. При возведении бескаркасных зданий преимущественно применяют скользящую, объемно-переставную, щитовую (крупно- и мелкощитовую) и блочную опалубки, при возведении каркасных - методы щитовой опалубки, подъема этажей (МПЭ) и подъема перекрытий (МПП). Своеобразной разновидностью сборно-монолитного домостроения в последнее десятилетие стала конструктивно-технологическая система зданий, возводимых в оставляемой опалубке из или с применением полимерных материалов.

Метод скользящей опалубки предусматривает непрерывное бетонирование стен в системе синхронно перемещающихся по вертикали опалубочных щитов, установленных по контуру всех несущих стен здания или захватки-секции (рис.13). Метод получил применение в строительстве многоэтажных односекционных домов и стволов жесткости в многоэтажных зданиях ствольной и каркасно - ствольной конструктивных систем. Однако и в этой узкой области он постепенно уступает место методам объемно-переставной и щитовой опалубок. Это связано с технологическими недостатками системы (опасность "срыва" бетона в процессе бетонирования, особенно, бетона на пористых заполнителях), а также более низкого качества поверхностей конструкции после распа-24


Рис.13. Схема возведения бетонной стены в скользящей опалубке: 1 - щит опалубки, 2 -домкратная рама, 3 - домкрат и дом-кратный стержень, 4 - платформа для хранения дом-кратных стержней, 5 - верхний рабочий пол, 6 - нижний рабочий пол, 7 - стена из монолитного бетона

лубки, чем при других методах. Организационные осложнения сопряжены и с целесообразностью круглосуточного процесса бетонирования.

Метод обьемно-переставной опалубки (рис.14) основан на цикличном (поэтажном) бетонировании внутренних стен и перекрытий с последовательным горизонталь-

Рис.14. Возведение здания в объемно - переставной (туннельной) опалубке: 1 - Г-образ-ный элемент опалубки (полутуннель), 2 - траверса для подъема опалубки типа "утиный нос", 3-цокольная опалубка, устанавливаемая на крестообразных вставках. За - бетонный цоколь, необходимый для фиксации стены следующего этажа, 4 - крестообразная вставка, 5 - торцевая опалубка перекрытия, 6 - торцевая опалубка стены, 7 - проемообра-зователь, 8 - стяжка, 9 -крупнощитовая опалубка стен для устройства торцов дома, 10 и 11 -рабочие подмости; 12 -телескопическая стойка, 13 -инфракрасный излучатель, 14 - ограждение; 15 - брезент, закрывающий туннель во время прогрева бетона; 16 -домкрат




0 1 [ 2 ] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44