Перейти к списку литературы  Текущий журнал 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 [ 86 ] 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

Одним из путей повышения эффективности выделения из сточных вод нерастворенных примесей может стать применение осветлителей со взвешенным фильтром. В этих сооружениях совмещаются осаждение и фильтрация сточной воды через слой хлопьев осадка (см. рис 4.38).

Осветлители могут работать как с предварительной коагуляцией и аэрацией сточных вод, так и без такой подготовки. Применение их в качестве первичных отстойников для бытовых сточных вод не рекомендуется.

Глава XVni

ОБРАБОТКА, ОБЕЗВРЕЖИВАНИЕ И ИСПОЛЬЗОВАНИЕ ОСАДКОВ

§ 97. ХАРАКТЕРИСТИКА ОСАДКОВ, МЕТОДЫ ОБРАБОТКИ, ПРИМЕНЯЕМЫЕ СООРУЖЕНИЯ

В результате механической и биологической очистки городских сточных вод на очистных сооружениях образуются различного вида осадки, содержащие органические вещества. Это отбросы, задерживаемые решетками, осадок, выпадающий в первичных отстойниках, активный ил или биопленка, образующиеся в сооружениях аэробной биологической очистки воды. Отбросы после дробления обычно сбрасываются в канал перед первичными отстойниками, улавливаются ими и попадают, таким образом, в сырой осадок.

Общий объем осадков, как правило, не превышает 1% объема обрабатываемых стоков, при этом на долю активного ила приходится 60- 70% образующихся осадков.

Осадок из первичных отстойников крайне неоднороден по фракционному составу. По данным московских очистных станций, содержание в нем частиц крупностью более 7-10 мм составляет 5-20%, крупностью 1-7 мм - 9-33%, крупностью менее 1 мм -50-88% массы сухого вещества. Осадок имеет влажность 92-96%, слабокислую реакцию среды, в значительной степени насыщен микроорганизмами (в том числе патогенными), содержит яйца гельминтов.

Активный ил По фракционному составу значительно однороднее осадка первичных отстойников; около 98% (по массе) частиц ила имеют размер менее 1 мм. Влажность активного ила в зависимости от принятой схемы обработки составляет 96-99,2%. Хлопья ила, состоящие из большого числа многослойно расположенных микробиальных клеток, заключенных в слизь, обладают очень развитой удельной площадью поверхности, составляющей около 100 м на 1 г сухого вещества. Так же как осадок, ил может быть заражен яйцами гельминтов.

Твердая фаза осадков городских сточных вод состоит из органических и минеральных веществ Органическая, или беззольная, часть в осадке из первичных отстойников составляет 65-75% массы сухого вещества, в иле - 70-75%. Соответственно зольность осадка колеблется от 25 до 35%, ила -от 25 до 307о.

Основными компонентами беззольной части осадка и ила являются белково-, жиро-, углеводоподобные вещества, в сумме составляющие 80-85%. Остальные 15-20% приходятся на долю лигнино-гумусового комплекса соединений. Количественные соотношения отдельных компонентов в осадке и иле различны. Если в беззольном веществе осадка преобладают жироподобные вещества и углеводы, то в активном иле значительную часть органического вещества составляют белки.



Осадки сточных вод содержат ценные удобрительные вещества (азот, фосфор, калий, микроэлементы) и могут быть использованы в качестве удобрения.

Исследования, провед-енные АКХ, показали, что активный ил может быть использован в качестве кормовой добавки к рациону сельскохозяйственных животных. Питательная ценность активного ила обусловлена высоким содержанием белка и витаминов. Ил городских очистных станций содержит почти все витамины группы В и особенно много витамина Bi2.

Химический состав осадков, по данным Курьяновской станции аэрации, приведен в табл. 4.27.

Таблица 427

Химический состав осадков сточных вод

Вид осадка

Белки

Жиры

Углеводы

Азот общий

Фосфор

Содержание бактерий СоИ в 1 г сухого вещества

% беззольного вещества

% сухого вещества

Осадок из первичных отстойников ..... Активный ил , , . .

28-32 40-44

25-30 18-23

14 18 4-7

5-6 8-10

3,5-4 8-9

10-108 4.106-3-10

Состав осадка и ила может меняться в значительных пределах и зависит от состава сточных вод, принятой схемы очистки и других факторов.

Больщое содержание органических веществ обусловливает способность осадков быстро загнивать, а высокая бактериальная зараженность, наличие в них яиц гельминтов создают опасность распространения инфекций. Поэтому основной задачей обработки осадков является их обезвреживание: получение безопасного в санитарном отношении продукта.

Основным методом обезвреживания осадков городских сточных вод является анаэробное сбраживание. Брожение называется метановым, так как в результате распада органических веществ осадков в качестве одного из основных продуктов образуется метан.

В основе биохимического процесса метанового брожения лежит способность сообществ микроорганизмов в ходе своей жизнедеятельности окислять органические вещества осадков сточных вод.

Промышленное метановое брожение осуществляется широким спектром бактериальных культур. Теоретически рассматривают брожение осадков, состоящее из двух фаз: кислой и щелочной.

В первой фазе кислого или водородного брожения сложные органические вещества осадка и ила под действием внеклеточных бактериальных ферментов сначала гидролизуются до более простых: белки - до пептидов и аминокислот, жиры - до глицерина и жирных кислот, углеводы- до простых Сахаров. Дальнейшие превращения этих веществ в клетках бактерий приводят к образованию конечных продуктов первой фазы, главным образом органических кислот. Более 90% образующихся кислот составляют масляная, пропионовая и уксусная. Образуются и другие относительно простые органические вещества (альдегиды, спирты) и неорганические (аммиак, сероводород, диоксид углерода, водород) .

Кислую фазу брожения осуществляют обычные сапрофиты: факультативные анаэробы типа молочнокислых, пропионовокислых бактерий и строгие (облигатные) анаэробы типа маслянокислых, ацетонобутило-вых, целлюлозных бактерий. Большинство видов бактерий, ответствен-



ных за первую фазу брожения, относится к спорообразующим формам.

Во второй фазе щелочного или метанового брожения из конечных продуктов первой фазы образуются метан и угольная кислота в результате жизнедеятельности метанообразующих бактерий - неспороносных облигатных анаэробов, очень чувствительных к условиям окружающей среды. Изученные виды метанообразующих бактерий относятся к трем родам: Methanobacterium, Methanococcus, Methanosarcina.

Особенностью этих бактерий является их строгая специфичность к используемому субстрату. Например, Methanobacterium formicicum окисляет только молекулярный водород и муравьиную кислоту, а Methanobacterium syboxydans использует более сложные соединения: валериановую и капроновую кислоты и бутиловый спирт. Однако в целом смешанная культура метанообразующих бактерий способна использовать практически все основные продукты кислой фазы брожения.

Метан образуется в результате восстановления СО2 или метильной группы уксусной кислоты:

4АН2+СО2 4A+CH,-f 2Н2О,

где АНз-органическое вещество, служащее для метанообразующих бактерий донором водорода; обычно это жирные кислоты (кроме уксусной) и спирты (кроме метилового). Многие виды метанообразующих бактерий окисляют молекулярный водород, образующийся в кислой фазе. Тогда реакция метанообразо-вания имеет вид:

4Н2+СО2 ""Р""»"-» CH4-f2H20-f энергия.

Микроорганизмы, использующие уксусную кислоту и метиловый спирт, осуществляют реакции:

СНзСООН2Н™-> CHi+COa-f энергия; 2СН3ОН te£2Z~> CH4-f COa-f 2Н2+энергия.

Все перечисленные реакции являются источниками энергии для метанообразующих бактерий, и каждая из них представляет собой серию последовательных ферментативных превращений исходного вещества. В настоящее время установлено, что в процессе метанообразования принимает участие витамин В12, которому приписывают основную роль в переносе водорода в энергетических окислительно-восстановительных реакциях у метанообразующих бактерий.

Считается, что скорости превращения веществ в кислой и метановой фазах одинаковы, поэтому при устойчивом процессе брожения не происходит накопления кислот - продуктов первой фазы.

Процесс сбраживания характеризуется составом и объемом выделяющегося газа, качеством иловой воды, химическим составом сброженного осадка.

Образующийся газ состоит в основном из метана и диоксида углерода. При нормальном (щелочном) брожении водород как продукт первой фазы может оставаться в газе в объеме не более 1-2%, так как используется метанообразующими бактериями в окислительно-восстановительных реакциях энергетического обмена.

Выделившийся при распаде белка сероводород H2S практически не попадает в газ, так как в присутствии аммиака легко связывается с имеющимися ионами железа в коллоидный сульфид железа FeS.

Конечный продукт аммонификации белковых веществ - аммиак - связывается с углекислотой в карбонаты и гидрокарбонаты, которые обусловливают высокую щелочность иловой воды.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 [ 86 ] 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209